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Abstract
We develop a new approach to the theory of finite crystallographic root systems in order to study the 𝑐-cluster complex and the 𝑐-Cambrian fan. This new approach stresses a more uniform and 
cleaner geometric approach over opaque combinatorial arguments. As an application, we vastly simplify the proofs of many known important results, and in the process prove new extensions of 

these results. This new approach will hopefully prove useful in gaining further insight on major unsolved problems in the theory of cluster algebras, in particular the frieze problem.

Introduction
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All About Coxeter Elements
• A Coxeter element 𝑐 = 𝑠𝑖1

𝑠𝑖2
⋯ 𝑠𝑖𝑟

is a product of all simple reflections taken

exactly once, in any order (i.e. (𝑖1, … , 𝑖𝑟) is a permutation of (1,2, … , 𝑟)) [1].

• This defines a partial order ≼𝑐 on [1, 𝑟], where 𝑖 ≺𝑐 𝑗 iff 𝑖 occurs before 𝑗 in
every permutation of [1, 𝑟] that gives the same value of 𝑐. [2]

• It is known that 1 is not an eigenvalue of 𝑐, i.e. 1 − 𝑐 : 𝔥∗ → 𝔥∗ is invertible.
• The fundamental 𝑐-roots are the roots given by

𝛽𝑖;𝑐 ≔ (1 − 𝑐)𝜔𝑖 .

• For any root 𝛼 ∈ Φ, there exists a unique smallest 𝑏𝑐(𝛼) ∈ ℤ≥0 and a unique

𝑖𝑐(𝛼) ∈ [1, 𝑟] such that 𝛼 = 𝑐𝑏𝑐(𝛼)𝛽𝑖𝑐(𝛼);𝑐[2]. Here, 𝑏𝑐(𝛼) is called the block

number, and 𝑖𝑐 𝛼 the orbit index , of 𝛼.

The 𝑐-Cluster Complex
• Fix a reduced word 𝑐 for the Coxeter element 𝑐 (i.e. fix a permutation of [1, 𝑟]).

This fixes a reduced word 𝒘𝒐 𝑐 for 𝑤𝑜, called the 𝑐-sorting word for 𝑤𝑜. Let

𝑐𝒘𝒐 𝑐 = 𝑠𝑖1
, 𝑠𝑖2

, … , 𝑠𝑖𝑑
.

• A subset 𝐾 = {𝑘1 < ⋯ < 𝑘𝑟} ⊂ [1, 𝑑] is called a facet if

• Let 𝐶𝐾 be the cone generated by {𝜔𝑘

𝑐
: 𝑘 ∈ 𝐾}. The collection of all cones 𝐶𝐾 as 𝐾

runs through all facets generates the 𝑐-Cambrian Fan [3].

• Define an abstract simplicial complex
structure on [1, 𝑑] by taking the
collection of all subsets of every facet.
This is the 𝑐𝑤𝑜(𝑐) sub-word complex
(or 𝑐-cluster complex) [3].

• For each 𝑘 ∈ [1, 𝑑] , set 𝜔𝑘

𝑐
=

𝑠𝑖1
𝑠𝑖2

⋯ 𝑠𝑖𝑘−1
𝜔𝑖𝑘

. Then, for each facet

𝐾 , we have the set of 𝑟 vectors

{𝜔𝑘

𝑐
: 𝑘 ∈ 𝐾}. It is known that this is a

basis for 𝔥∗.

𝑠𝑖1
𝑠𝑖2

⋯ ෞ𝑠𝑖𝑘1
⋯ ෞ𝑠𝑖𝑘𝑟

⋯ 𝑠𝑑 = 𝑤𝑜.
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What are Finite Root Systems?

• A rank 𝑟 crystallographic finite root system Φ [1] is a finite set of vectors in an

𝑟-dimensional real vector space 𝔥∗ with an inner product , such that
➢ ℝ𝛼 ∩ Φ = {±𝛼} for all 𝛼 ∈ Φ;
➢ (crystallographic condition) for any 𝛼, 𝛽 ∈ Φ, we have 

𝛼∨, 𝛽 ≔
2 𝛼, 𝛽

𝛼, 𝛼
∈ ℤ;

➢ for any 𝛼, 𝛽 ∈ Φ, the reflection 𝑠𝛼𝛽 ≔ 𝛽 − 𝛼∨, 𝛽 𝛼 ∈ Φ.
• There exists a basis 𝛼 = (𝛼1, … , 𝛼𝑟) of simple roots for 𝔥∗such that every root

𝛼 ∈ Φ can be expressed as 𝛼 = σ𝑖 𝑐𝑖𝛼𝑖 where the 𝑐𝑖 are either all non-negative
integers, or all non-positive integers.

• Fixing a choice of simple roots, the fundamental weights 𝜔 are a basis for 𝔥∗

which satisfy 𝛼𝑖
∨, 𝜔𝑗 = 𝛿𝑖𝑗 .

• The Weyl Group 𝑊 is the orthogonal group generated by the reflections 𝑠𝛼.
Elements of 𝑊 can be written as words 𝑠𝑗1

𝑠𝑗2
⋯ 𝑠𝑗𝑘

.

• The fundamental chamber 𝒟 is the
cone generated by the fundamental
weights. The Weyl group acting on 𝒟
creates the Coxeter Fan of cones.

• There is a unique longest element 𝑤𝑜

of length |Φ|, in the sense that any
other element of 𝑊 can be written as a
product of (strictly) less than |Φ|
simple reflections. It is an involution,
and for each 𝑖 ∈ [1, 𝑟]

𝑤𝑜𝜔𝑖 = −𝜔𝑖∗

for some 𝑖∗ ∈ [1, 𝑟].
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Results
We fix a Coxeter element 𝑐 throughout.

Definition: 𝑐-Order on Φ.
Given two roots 𝛼, 𝛽 ∈ Φ, we say that 𝛼 ≤𝑐 𝛽 iff either 

𝑏𝑐 𝛼 < 𝑏𝑐 𝛽 , or 𝑏𝑐 𝛼 = 𝑏𝑐 𝛽 and 𝑖𝑐 𝛼 ≼𝑐 𝑖𝑐 𝛽 .

Lemma: For any reduced word for 𝑐, if 𝛽𝑘

𝑐
≤𝑐 𝛽𝑘′

𝑐
then 𝑘 < 𝑘′, where

𝛽𝑘

𝑐
≔ 𝑠𝑖1

𝑠𝑖2
⋯ 𝑠𝑖𝑘−1

𝛼𝑖𝑘

with 𝑐𝒘𝒐 𝑐 = (𝑠𝑖1
, 𝑠𝑖2

, … , 𝑠𝑖𝑑
).

Recall the definition 𝜔𝑘

𝑐
= 𝑠𝑖1

𝑠𝑖2
⋯ 𝑠𝑖𝑘−1

𝜔𝑖𝑘
(given a reduced word). It is known

that 𝛽𝑘

𝑐
= 1 − 𝑐 𝜔𝑘

𝑐
for all 𝑘 ∈ [1, 𝑑].

Theorem 1: Suppose 𝛽, 𝛽′ ∈ Φ(c) are such that either both 𝛽, 𝛽′ ∈ Φ+, or both 
𝑐−1𝛽, 𝑐−1𝛽′ ∈ Φ+, and set 𝜔 ≔ 1 − 𝑐 −1𝛽 and 𝜔′ ≔ 1 − 𝑐 −1𝛽′. Define 

𝑝 ≔ 𝛽∨, 𝜔′ and 𝑝′ ≔ 𝛽′∨, 𝜔 .
Then, the following four statements hold:
1) 𝑝𝑝′ ≤ 0, i. e. 𝑝, 𝑝′ have opposite sign (or at least one of them is zero).
2)If 𝛽 <𝑐 𝛽′, then 𝑝 ≤ 0 ≤ 𝑝′.
3)If 𝑝, 𝑝′ ≠ 0,0 , then 𝛽 <𝑐 𝛽′ if and only if 𝑝 ≤ 0 ≤ 𝑝′.
4)We have

𝛽, 𝛽 𝑝 + 𝛽′, 𝛽′ 𝑝′ = 2 𝛽, 𝛽′ .
Consequently, 𝑝, 𝑝′ ≠ 0 if 𝛽 and 𝛽′ are not orthogonal.

As examples to showcase our new approach, we provide one new definition, one 
new result, and one extension of a previously known result.

Lemma-Definition: Given any 𝐵 ⊂ Φ(𝑐), we define the ordered product
Π𝑐 𝐵 ≔ 𝑠𝛽1

⋯ 𝑠𝛽𝑛

where 𝐵 = {𝛽1, … , 𝛽𝑛} is any ordering on 𝐵 such that for any 𝑖 < 𝑗, either 𝛽𝑖 and
𝛽𝑗 are orthogonal, or 𝛽𝑖 <𝑐 𝛽𝑗 .

The ordered product allows us to define an abstract simplicial complex
structure on Φ(𝑐), by declaring 𝐵 ⊂ Φ(𝑐) to be a facet iff 𝐵 = 𝑟 and Π𝑐 𝐵 =
𝑐−1.

This coincides with the previous notion of a facet, by the correspondence

𝐾 ⊂ 1, 𝑑 ⟷ 𝐵𝐾 ≔ 𝛽𝑘

𝑐
: 𝑘 ∈ 𝐾 .

Theorem (Characterization of c-Sortable Elements): An element w ∈ W
is 𝑐-sortable iff for each 𝑡, 𝑡′ ∈ [1, ℓ] with 𝑡 < 𝑡′, either 𝛽𝑡;𝑤 and 𝛽𝑡′;𝑤 are

orthogonal, or 𝛽𝑡;𝑤 <𝑐 𝛽𝑡′;𝑤 , where 𝑤 is the 𝑐-sorting word of 𝑤. Moreover, if

either condition holds, then Π𝑐 inv 𝑤 = 𝑤−1.

Theorem (Sign-Coherence): Suppose 𝐵 ⊂ Φ(𝑐) is a facet, and let 𝐶𝐵 be the
cone generated by 1 − 𝑐 −1𝛽 for 𝛽 ∈ 𝐵. Then, (it is known that) for each 𝑖 ∈
[1, 𝑟], each cone 𝐶𝐵 lies completely in one of the two right half spaces

𝐻𝛼𝑖
+ ≔ 𝜆 ∈ 𝔥∗: 𝛼𝑖

∨, 𝜆 ≥ 0 or 𝐻𝛼𝑖
− ≔ 𝜆 ∈ 𝔥∗: 𝛼𝑖

∨, 𝜆 ≤ 0 ;

i.e. either 𝐶𝐵 ⊂ 𝐻𝛼𝑖
+ or 𝐶𝐵 ⊂ 𝐻𝛼𝑖

− [4].

Moreover, for fixed 𝑖 ∈ [1, 𝑟], we have:
• if 𝐶𝐵 ⊂ 𝐻𝛼𝑖

+ , then 𝐶𝐵 ∩ ℝ𝛼𝑖
⊥ contains the (possibly trivial) cone spanned by

{ 1 − 𝑐 −1𝛽: 𝛽 ∈ 𝐵, 𝛼𝑖 ≰𝑐 𝛽}
• if 𝐶𝐵 ⊂ 𝐻𝛼𝑖

− , then 𝐶𝐵 ∩ ℝ𝛼𝑖
⊥ contains the (possibly trivial) cone spanned by

{ 1 − 𝑐 −1𝛽: 𝛽 ∈ 𝐵, 𝛼𝑖 ≱𝑐 𝛽}

• Now, for any 𝑤 ∈ 𝑊, suppose 𝑤 = (𝑠𝑗1
, ⋯ , 𝑠𝑗ℓ

), and let 𝛽𝑡;𝑤 ≔ 𝑠𝑗1
⋯ 𝑠𝑗𝑡−1

𝛼𝑗𝑡
. Then,

inv 𝑤 ≔ {𝛽𝑡;𝑤: 𝑡 ∈ [1, ℓ]} = Φ+ ∩ 𝑤Φ−

is the set of all positive roots sent to negative roots by 𝑤−1 [1].
• It is known that for any 𝑤 ∈ 𝑊, there exists a unique facet 𝐵 ⊂ Φ 𝑐 such that

𝑤𝒟 ⊆ 𝐶𝐵 . Moreover, given a facet 𝐵, there exists a unique 𝑤 ∈ 𝑊 with minimal
length satisfying 𝑤𝒟 ⊆ 𝐶𝐵[3]. Such an element is called 𝑐-sortable.

Significance
• Theorem 1 provides an easy method to compare two roots under the 𝑐-order.

This also allows us to reduce the proof of many results (both known as well as
new) into a direct computation involving inner products.

• The 𝑐-order allows us to give more intrinsic definitions for important structures,
thus avoiding some of the combinatorial book-keeping.

• Our proofs avoid opaque inductive arguments on reduced words of 𝑐.


